Enhancing the Efficiency of Attack Detection System Using Feature selection and Feature Discretization Methods
نویسندگان
چکیده
Intrusion detection technologies have grown in popularity recent years using machine learning. The variety of new security attacks are increasing, necessitating the development effective and intelligent countermeasures. existing intrusion system (IDS) uses Signature or Anomaly based systems with learning algorithms to detect malicious activities. Signature-based rely only on signatures that been pre-programmed into systems, known cannot any unusual activity. supervised algorithm detects threats. To address this issue, proposed model employs an unsupervised approach for detecting attacks. This combines Sub Space Clustering One Class Support Vector Machine utilizes feature selection methods such as Chi-square, well Feature Discretization Methods like Equal Width identify both undiscovered assaults. results experiments outperforms several terms rate accuracy decrease computational time.
منابع مشابه
Feature Selection Algorithm for enhancing Modeling Efficiency
This paper presents High Probability Minimum Redundancy, HPMR, as a new algorithm for employing the most predictive features to contribute dimensionality reduction. The proposed algorithm is useful for finding new, optimal, and more informative features maintaining acceptable classification accuracy. A problem encountered in many large-scale information applications relevant to expert and intel...
متن کاملFeature Selection via Discretization
| Discretization can turn numeric attributes into discrete ones. Feature selection can eliminate some irrelevant and/or redundant attributes. Chi2 is a simple and general algorithm that uses the 2 statistic to discretize numeric attributes repeatedly until some inconsistencies are found in the data. It achieves feature selection via dis-cretization. It can handle mixed attributes, work with mul...
متن کاملFeature Ranking, Selection and Discretization
Many indices for evaluation of features have been considered. Applied to single features they allow for filtering irrelevant attributes. Algorithms for selection of subsets of features also remove redundant features. Hashing techniques enable efficient application of feature relevance indices to selection of feature subsets. A number of such methods have been applied to artificial and real-worl...
متن کاملFeature-based Malicious URL and Attack Type Detection Using Multi-class Classification
Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...
متن کاملMLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection
Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal on Recent and Innovation Trends in Computing and Communication
سال: 2023
ISSN: ['2321-8169']
DOI: https://doi.org/10.17762/ijritcc.v11i4s.6322